
3GPP TSG-SA5 Meeting #145

 DOCPROPERTY MtgTitle * MERGEFORMAT -e
S5-225379
Online, , 15th Aug 2022 - 24th Aug 2022
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	32.158
	CR
	0054
	rev
	-
	Current version:
	16.6.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:

	Rel-16 CR 32.158 Clarify concept of MnS root

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	SA5

	
	

	Work item code:
	TEI16, REST_SS
	
	Date:
	2022-08-05

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier

release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
…
Rel-16
(Release 16)
Rel-17
(Release 17)
Rel-18
(Release 18)
Rel-19
(Release 19)

	
	

	Reason for change:
	The concept and usage of the MnS root is underspecied as to a few aspects. This may lead to interoperability issues.

	
	

	Summary of change:
	The concept and usage of the MnS root is clarifed.

	
	

	Consequences if not approved:
	Interoperability issues persist.

	
	

	Clauses affected:
	4.4.2, 4.4.4, 6.1.3, 6.4.3, A.1, A.2.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

	Begin of modifications

4.4
URI structure

4.4.1
Introduction

MnS producers can be divided into two categories. The first category exposes MnS(s) to manipulate resources representing managed object instances. In this case the URI structure is governed by the mapping rules defined in clause 4.2.3. The second category exposes MnS(s) to manipulate resources not representing managed object instances. In this case the DN concept is not relevant. The URI structure for both categories is different.
4.4.2
URI structure for resources representing managed object instances
URIs identifying resources representing managed object instances shall follow a structure given by

{scheme}://{URI-DN-prefix}/{root}/{MnSName}/{MnSVersion}/{URI-LDN}
with:

{scheme}

Scheme component "http" or "https"

{URI-DN-prefix}

Authority component (host identifier and optional TCP port), the host name is constructed from the DN prefix as defined in clause 4.2.3.

{root}

Part of the path component, allows specifying optional path segments for structuring the resource hierarchy on a HTTP server.

{MnSName}

Part of the path component, allows specifying an optional MnS name in a single path segment.

{MnSVersion}

Part of the path component, allows specifying an optional MnS version in a single path segment.

{URI-LDN}

Part of the path component, constructed from the LDN as defined in clause 4.2.3, containing zero, one or more path segments.

As seen above, to construct the URI from a DN, it is necessary to map the "DNPrefixPlusRDNSeparator" as defined in clause 7.3 of [3], the “LocalDN” as defined in clause 7.3 of [3], and to add the additional optional path segments "/{root}/{MnSName}/{MnSVersion}".

To allow for a predictive mapping from an URI to the original DN it is necessary to specify "/{MnSName}/{MnSVersion}" in such a way that the beginning of the "LocalDN" can be unambigously identified.
Note it may be required when specifying a MnS to clearly identify the last RDN of "{URI-LDN}" and to use the following instead of "{URI-LDN}"

{URI-LDN-first-part}/{RDN}
or

{URI-LDN-first-part}/{className}={id}.
For the sake of brevity, "MnSRoot" is introduced that includes the "{scheme}" part, the two slash characters ("//"), the "{authority}" part, a single slash character ("/") and the "{root}" part. When using "{MnSRoot}" the abbreviated URI structure is given by

{MnSRoot}/{MnSName}/{MnSVersion}/{URI-LDN}

or

{MnSRoot}/{MnSName}/{MnSVersion}/{URI-LDN-first-part}/{className}={id}

It is recommended to use this abbreviated form of the URI structure when defining Management Services.
4.4.3
URI structure for resources not representing managed object instances
URIs identifying other resources shall follow a structure given by

{scheme}://{authority}/{root}/{MnSName}/{MnSVersion}/{MnSResourcePath}
with:

{scheme}

Scheme component "http" or "https"

{authority}
Authority component (host identifier and optional TCP port)

{root}

Part of the path component, allows specifying optional path segments for structuring the resource hierarchy on a HTTP server.

{MnSName}

Part of the path component, specifies the mandatory MnS name in a single path segment.

{MnSVersion}

Part of the path component, specifies the mandatory MnS version in a single path segment.

{MnSResourcePath}

Part of the path component, one or more path segments, specifies a resource of the MnS

For the sake of brevity, {MnSRoot} is introduced that includes the "{scheme}" part, the two slash characters ("//"), the "{authority}" part, a single slash character ("/") and the "{root}" part. When using "{MnSRoot}" the abbreviated URI structure is given by

{MnSRoot}/{MnSName}/{MnSVersion}/{MnSResourcePath}
It is recommended to use this abbreviated version of the URI structure when defining Management Services.
4.4.4
Resource "../{MnSName}/{MnSVersion}"

The resource identified by "../{MnSName}/{MnSVersion}" is called MnS root. It represents the conceptual parent of the top-level managed object instances. It is created by the MnS Producer. A MnS Consumer cannot create or delete this resource.

The resource is the target resource for many HTTP requests, such as requests to retrieve all top-level managed object instances in case there are multiple top-level managed object instances, or for requests to create objects in case there are no manged object instances yet and the creation request needs to be directed to the parent of the resource to be created.

	Next modification

6.1.3
Query parameters for filtering

Filtering may be supported by the HTTP GET method. It is not supported by any other method.

The URI query component shall be used for carrying the filter construct. The name of the query parameter is "filter".
XPath 1.0 [15] shall be used for specifying the filter construct.
The XPath expression is applied to an XML document constructed based on the following rules:

-
The root element is the object identified by the path component of the target URI. If the path component of the target URI identifies the MnS root (see clause 4.4.4), then the element name of the root element shall be "mnsRoot".
-
The document includes scoped objects only.

-
The document is constructed with the scoped objects using the hierarchical response construction method defined in clause.6.1.4.

-
The JSON document constructed according to the first three bullet points is mapped into a conceptual XML document.

A valid XPath expression returns a flat list of selected resources. Name-contained resources included in the selected resources shall be removed before constructing the final response message according to clause 6.1.4.

The XPath expression shall be an absolute path expression, and hence always start with a backslash "/", that identifies the root node of the input document.
	Next modification

6.4.3
3GPP JSON Patch

3GPP JSON Patch is a 3GPP defined extension to JSON Merge Patch (RFC 6902 [13]).

Like 3GPP JSON Merge Patch, it allows, using a single patch document, to update the target resource (as does JSON Patch) and to update, create or delete descendant resources, which JSON Patch does not allow, at least not based on resource identifiers.

This extension is that the "path" and "from" properties of a patch operation define an offset to the target resource as specified by the request URI. This offset is relative to the target URI. It has a first component pointing to a resource below the target resource, and a second component pointing to a secondary resource within the resource identified by the first component.

The first component of "path" or "from" is built from URI path components. It follows the same syntax as the path components of the target URI. The second component is a URI fragment with a JSON pointer in the URI fragment identifier representation as defined in clause 6 of RFC 6901 [14], i.e. the second component starts with the "#" character. Both components are concatenated without a delimiter.
For example, assume the target URI is "/SubNetwork=SN1" and the "userLabel" attribute of a child of class "ManagedElement" with the id "ME1" is to be patched, then the first path component is "/ManagedElement=ME1/" and the second path component is "#attributes/userLabel". This results in the following path:

 "path": "/ManagedElement=ME1/#attributes/userLabel".

The target URI shall identify a common ancestor resource of the resources to be patched, or the MnS root.

Note when one or more root resources are patched, the target URI identifies always the MnS root. When no root resources are patched, the MnS producer has a choice as to the target resource. For example, assume the resource with the URI

 "http://example.com/3gpp/ProvMnS/1700/ManagedElement=ME1/XyzFunction=XYZF1"

is patched. Then the target resource is either the parent resource of the patched resource, in this case the root resource,

 "example.com/3gpp/ProvMnS/1700/ManagedElement=ME1"

or the MnS root.

 "example.com/3gpp/ProvMnS/1700".

Setting the target resource always to the MnS root is hence a possible implementation option for MnS Consumers.

When creating new resources ("op"="add"), the object class name of the resource to be created shall be included in the "value" property of the operation.

The media type of 3GPP JSON Merge Patch is "3gpp-patch+json". This media type is defined by 3GPP and is not registered with IANA. Patch documents using this media type must conform to the "application/json" media type.
The procedure is as follows:

1)
The MnS Consumer sends a HTTP PATCH request to the MnS Producer. The message body carries a 3GPP JSON Patch document describing a set of modification instructions to be applied to the identified resources.
2)
The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the representation of the updated resources, constructed according to either the flat or hierarchical response construction method described in clause 6.1.1, in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
A single operation in a 3GPP JSON Patch document shall patch a single (primary) resource only. Different operations in a patch document can patch different resources though. The consequence of this restriction is for example that subtrees with multiple resources cannot be created or deleted with a single patch operation. Each resource needs to be created or deleted with an own patch operation in the patch document. This behaviour is aligned with those of the PUT and DELETE methods.

Note that the "replace" operation of (3GPP) JSON Patch has replace semantics like PUT and not merge semantics like JSON Merge Patch. When multiple attributes or attribute fields of a resource are patched, then a patch operation for each update is required, for example

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "replace",
 "path": "#/attributes/userLabel",
 "value": "Berlin NW-1"

 },

 {

 "op": "replace",
 "path": "#/attributes/plmnId/mcc",
 "value": 654

 }
]

To streamline partial updates of single resources, 3GPP JSON Patch introduces a new patch operation named "merge". For that operation, the JSON object contained in the "value" property shall be merged into the target resource referenced by "path" using the rules of JSON Merge Patch (RFC 7396 [12]). An MnS Producer shall verify if a "merge" operation is for a single resource by checking if the "path" property contains the string "#/attributes" and shall reject the request with "422 Unprocessable Entity" if it doesn't.
With the "merge" operation, the updates in the previous example can be expressed as follows.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "merge",

 "path": "#/attributes",

 "value": {

 "userLabel": "Berlin NW-1",

 "plmnId": {

 "mcc": 654

 }

 }

 }

]

The following example is invalid. It attempts to patch the contained "ManagedElement" resources, which is not allowed.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "merge",

 "path": "",

 "value": {

 "attributes": {

 "userLabel": "Berlin NW-1",

 "plmnId": {

 "mcc": 654

 }

 },

 "ManagedElement": [

 {

 ...
 }

]

 }

 }

]

	Next modification

A.1
Example data model

The following JSON instance document is used for the examples in this clause.

	{

 "SubNetwork": [

 {

 "id": "SN1",
 "objectClass": "SubNetwork",
 "objectInstance": "SubNetwork=SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId-id": {

 "mcc": 456,

 "mnc": 789

 }

 },

 "ManagedElement": [

 {

 "id": "ME1",
 "objectClass": "ManagedElement",
 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 },

 "XyzFunction": [

 {

 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "objectInstance":"SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",
 "objectInstance":"SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 },

 {

 "id": "ME2",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",
 "objectClass": "PerfMetricJob",
 "objectInstance": "SubNetwork=SN1,PerfMetricJob=PMJ1",

 "attributes": {

 "granularityPeriod": "5",

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",
 "objectClass": "ThresholdMonitor",
 "objectInstance": "SubNetwork=SN1,ThresholdMonitor=TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

 }

]

}

The corresponding JSON schema is

	{

 "SubNetwork": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

 "objectClass": {

 "type": "string"

 },

 "objectInstance": {

 "type": "string"

 },

 "attributes": {

 "type": "object",

 "properties": {

 "userLabel": {

 "type": "string"

 },

 "userDefinedNetworkType": {

 "type": "string"

 },

 "plmnId": {

 "type": "object",

 "properties": {

 "mcc": {

 "type": "integer"

 },

 "mnc": {

 "type": "integer"

 }

 }

 }

 }

 },

 "ManagedElement": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

 "objectClass": {

 "type": "string"

 },

 "objectInstance": {

 "type": "string"

 },

 "attributes": {

 "type": "object",

 "properties": {

 "userLabel": {

 "type": "string"

 },

 "vendorName": {

 "type": "string"

 },

 "location": {

 "type": "string"

 }

 }

 },

 "XyzFunction": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

 "objectClass": {

 "type": "string"

 },

 "objectInstance": {

 "type": "string"

 },

 "attributes": {

 "type": "object",

 "properties": {

 "attributeA": {

 "type": "string"

 },

 "attributeB": {

 "type": "integer"

 }

 }

 },

 "required": ["id"]

 }

 }

 },

 "required": ["id"]

 }

 }

 },

 "PerfMetricJob": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

 "objectClass": {

 "type": "string"

 },

 "objectInstance": {

 "type": "string"

 },

 "attributes": {

 "type": "object",

 "properties": {

 "granularityPeriod": {

 "type": "integerstring"

 },

 "perfMetrics": {

 "type": "array",

 "items": {

 "type": "string"

 }

 }

 },

 "objectInstances": {

 "type": "array",

 "items": {

 "type": "string"

 }

 }

 },

 "required": ["id"]

 }

 }

 },

 "ThresholdMonitor": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

 "objectClass": {

 "type": "string"

 },

 "objectInstance": {

 "type": "string"

 },

 "attributes": {

 "type": "object",

 "properties": {

 "thresholdLevels": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "level": {

 "type": "string"

 },

 "thresholdValue": {

 "type": "integer"

 }

 }

 }

 }

 }

 },

 "required": ["id"]

 }

 }

 },

 "required": ["id"]

 }

 }

 }

}

The corresponding XML instance document is provided below as well. It can be helpful when evaluating XPath expressions.
	<?xml version="1.0" encoding="UTF-8" ?>

<mnsRoot>

 <SubNetwork>

 <id>SN1</id>
 <objectClass>SubNetwork</objectClass>

 <objectInstance>SubNetwork=SN1</objectInstance>
 <attributes>

 <userLabel>Berlin NW</userLabel>

 <userDefinedNetworkType>5G</userDefinedNetworkType>

 <plmnId>

 <mcc>456</mcc>

 <mnc>789</mnc>

 </plmnId>

 </attributes>

 <ManagedElement>

 <id>ME1</id>

 <objectClass>ManagedElement</objectClass>

 <objectInstance>SubNetwork=SN1,ManagedElement=ME1</objectInstance>
 <attributes>

 <userLabel>Berlin NW 1</userLabel>

 <vendorName>Company XY</vendorName>

 <location>TV Tower</location>

 </attributes>

 <XyzFunction>

 <id>XYZF1</id>

 <objectClass>XyzFunction</objectClass>

 <objectInstance>SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1</objectInstance>

 <attributes>

 <attrA>xyz</attrA>

 <attrB>551</attrB>

 </attributes>

 </XyzFunction>

 <XyzFunction>

 <id>XYZF2</id>

 <objectClass>XyzFunction</objectClass>

 <objectInstance>SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2</objectInstance>

 <attributes>

 <attrA>abc</attrA>

 <attrB>552</attrB>

 </attributes>

 </XyzFunction>

 </ManagedElement>

 <ManagedElement>

 <id>ME2</id>

 <objectClass>ManagedElement</objectClass>

 <objectInstance>SubNetwork=SN1,ManagedElement=ME2</objectInstance>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

 </ManagedElement>

 <PerfMetricJob>

 <id>PMJ1</id>

 <objectClass>PerfMetricJob</objectClass>

 <objectInstance>SubNetwork=SN1,PerfMetricJob=PMJ1</objectInstance>
 <attributes>

 <granularityPeriod>5</granularityPeriod>

 <perfMetrics>Metric1</perfMetrics>

 <perfMetrics>Metric2</perfMetrics>

 <objectInstances>Obj1</objectInstances>

 <objectInstances>Obj2</objectInstances>

 </attributes>

 </PerfMetricJob>

 <ThresholdMonitor>

 <id>TM1</id>

 <objectClass>ThresholdMonitor</objectClass>

 <objectInstance>SubNetwork=SN1,ThresholdMonitor=TM1</objectInstance>

 <attributes>

 <ThresholdLevels>

 <level>1</level>

 <thresholdValue>10</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>2</level>

 <thresholdValue>20<thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>3</level>

 < thresholdValue>30</thresholdValue>

 </ThresholdLevels>

 </attributes>

 </ThresholdMonitor>
 </SubNetwork>
</mnsRoot>

NOTE:
Void

The following examples do not always follow the URI structure specified in clause 4.4. For simplicity reasons, the path component "/{MnSName}/{MnSVersion}" is often omitted. Also the Domain Component (DC) is omitted in DNs carried by "objectInstance" attributes. Though this is a valid implementation as per TS 32.300 [3], it is recommended to have "DC=example.org" or "DC=org, DC=example" as first components of DNs.
	Next modification

A.2.3
Retrieval of multiple complete resources using scoping and filtering

The following example selects the "SubNetwork" as base object at scope level "0" and all objects at scope level "1":

	GET /SubNetwork=SN1?scopeType=BASE_SUBTREE&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

All objects at scope level "1" are included in the response irrespective of their object class. When using the hierarchical response construction method, the response looks as follows:

	{

 "id": "SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 },

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

The response constructed with the flat response construction method looks like:

	[

 {

 "id": "SN1",

 "objectClass": "SubNetwork",

 "objectInstance": "SubNetwork=SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 }

 },

 {

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 },

 {

 "id": "PMJ1",

 "ojectClass": "PerfMetricJob",

 "objectInstance": "SubNetwork=SN1,PerfMetricJob=PMJ1",

 "attributes": {

 "granularityPeriod": "5",

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 },

 {

 "id": "TM1",

 "ojectClass": "ThresholdMonitor",

 "objectInstance": "SubNetwork=SN1,ThresholdMonitor=TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

When only objects at scope level "1" are requested to be returned, the request looks like:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

The response does not include the attributes of "SubNetwork" any more, only its "id" is included:

	{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

Similarly, for reading all objects on scope level "2", the MnS Consumer may send:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=2 HTTP/1.1

Host: example.org

Accept: application/json

When using the hierarchical response construction method, the response includes the complete representations of the "XyzFunction" objects. The "SubNetwork" and "ManagedElement" are present with their "id" only; they provide the containment nodes for the "XyzFunction" objects.
	{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

The "PerfMetricJob" and "ThresholdMonitor" are not included altogether, not even with the "id" only. This is because these nodes do not represent necessary path components to the scoped objects on the second level.

When using the flat response construction method, the response includes only "XyzFunction" objects without containment nodes. The "objectInstance" of each returned object is present in this case, as required in clause 6.1.4.

	[

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

The following example selects all objects on scope level "1" that have a "location" attribute whose value is equal to "Grunewald":

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=1\

 filter=/*/*[attributes[location="Grunewald"]] HTTP/1.1

Host: example.org

Accept: application/json

The response includes one "ManagedElement" object only:

	{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

]

}

The input document to the XPath filter is a document whose root node is the object identified by the path component of the URI and that includes the object representations of the scoped objects. In this example the root node is the "SubNetwork" without the "attributes" node. The input document includes all scoped objects on the scope level "1". These are the two "ManagedElement" objects and the "PerfMetricJob" object:

	{

 "SubNetwork": {

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob":[

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": ["Metric1", "Metric2"],

 "objectInstances": ["Obj1", "Obj2"]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]
 }

}

An implementation may be based on available XPath tools. In that case the JSON document may have to be converted to a XML document:

	<SubNetwork>

 <id>SN1</id>

 <ManagedElement>

 <id>ME1</id>

 <attributes>

 <userLabel>Berlin NW 1</userLabel>

 <vendorName>Company XY</vendorName>

 <location>TV Tower</location>

 </attributes>

 </ManagedElement>

 <ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

 </ManagedElement>

 <PerfMetricJob>

 <id>PMJ1</id>

 <attributes>

 <granularityPeriod>5</granularityPeriod>

 <perfMetrics>Metric1</perfMetrics>

 <perfMetrics>Metric2</perfMetrics>

 <objectInstances>Obj1</objectInstances>

 <objectInstances>Obj2</objectInstances>

 </attributes>

 </PerfMetricJob>

 <ThresholdMonitor>

 <id>TM1</id>

 <attributes>

 <ThresholdLevels>

 <level>1</level>

 <thresholdValue>10</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>2</level>

 <thresholdValue>20</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>3</level>

 <thresholdValue>30</thresholdValue>

 </ThresholdLevels>

 </attributes>

 </ThresholdMonitor>
</SubNetwork>

In this example the complete "ManagedElement" object is the result of applying the XPath expression:

	<ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

</ManagedElement>

XPath predicates allow to specify also ranges. The following example selects objects on scope level "2" that have an attribute with name "attrB" whose value is equal to or greater than 552 and less than 562.

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=2\

 filter=/*/*/*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

The response includes one "XyzFunction" object only:

	{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

An identical response is returned when using the following requests:

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_SUBTREE&scopeLevel=2\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL\

 filter=//XyzFunction[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

This example returns the containment tree only.
	GET /SubNetwork=SN1?scopeType=BASE_ALL&attributes= HTTP/1.1
Host: example.org

Accept: application/json

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

}

When the MnS Consumer does not know the root object of the containment tree and wants to retrieve the complete tree starting with the root, the target URI needs to identify the MnS root, i.e. the resource above the root object. According to clause 4.4.2, this resource is identified by the path segment "/{MnSName}/{MnSVersion}", for example "/ProvMnS/1700". In the following example, the "attributes" query parameter is empty and only the name-containment hierarchy (without attributes) is returned.
	GET /ProvMnS/1700?scopeType=BASE_ALL&attributes= HTTP/1.1

Host: example.org

Accept: application/json

The response is illustrated below. Properties of the MnS may be returned as siblings of "SubNetwork", as indicated in the example below by the placeholder "…".

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 ...,

 "SubNetwork": [
 {

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

 }

]

}

Multiple root resources can be returned as well. For example, assume a NRM with three "SubNetwork" root resources, then the response may look like:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{
 ...,
 "SubNetwork": [

 {

 "id": "SN1",

 ...
 },

 {

 "id": "SN2",

 ...
 },

 {

 "id": "SN3",

 ...
 }

]

}

	End of modifications

